The effect of methylmercury contamination and feed composition on the total DNTB (dithiobis (2-nitrobenzoic) acid)-reductase and thioredoxin reductase activities and on the expression of some genes involved in redox processes in the liver of the European Seabass (Dicentrarchus labrax)
Supervisor:
Mercury (Hg) is a ubiquitous pollutant which accumulates in aquatic systems. Methylmercury (MeHg) is the most common form of organic mercury which bioaccumulates and biomagnifies in the food chain. Top predatory fish species, such as tuna, have been considered some of the major contributors to dietary MeHg exposure. The toxicity of MeHg is attributed to its high specificity for selenium (Se) and its activity as an irreversible inhibitor of selenoenzymes: due to its high binding affinity for Se, the amount of this element available for the synthesis of selenoproteins is diminished. In this study, the effect of MeHg contamination and feed composition was assessed through the activity of DNTB-reductase and thioredoxin reductase (TrxR) activities as well as through the expression levels of the redox genes txn1, gpx1, txnrd1 and txnrd2 in the liver of Dicentrarchus labrax. In the first part of the experiment, Phase A, the results showed that the ingestion during 14 days of feeds polluted with 0, 0.5, 5 and 10 ppm MeHg, did not significantly affect either the total DNTB-reductase and TrxR activities or the expression level of the redox genes. In the second, and longer exposure experiment, Phase B, that lasted 53 days, there were no significant differences either in the total DNTB-reductase activity between the groups of D. labrax fed with a substitution of 20% of the feed with fish (both thawed hake and canned albacore) and the corresponding groups that also received 10 ppm MeHg in the diet. The inhibition of TrxR activity was only prevented by the substitution with thawed hake; however, the substitution with canned albacore failed to counteract the effect of MeHg and resulted in the lowest TrxR activity registered. On the other hand, the substitution with fish under exposure to MeHg did affect the expression of redox genes. Thus, perhaps the activity of selenoenzymes may not have a direct relationship with the expression levels of their corresponding selenogenes. It can therefore be concluded that TrxR is a toxicological target of MeHg and it has the potential to be a biomarker of MeHg exposure. Moreover, the expression levels of selenogenes may not be an appropriate measure of MeHg exposure, instead it is possible that the expression of the genes together with the efficiency of the translation process may be the determinants of the MeHg toxicity.
Location
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.