Characterisation of the mesozooplankton of the Bay of Calvi using a developed semi-automatic classification system of digital images
Supervisor: Sylvie Gobert (Univ. Liege)
Zooplankton play diverse crucial roles within the marine ecosystem and can also be used as bio-indicators of climate variability since very sensitive to environmental changes. Therefore it is essential to consider long-term plankton series which require an effective and rapid study method. We have therefore developed a supervised learning approach adapted for the (semi-) automatical classification of digital images of the mesozooplankton of the Bay of Calvi by using Zoo/ PhytoImage sofware. Also, a set of nine environmental time series including mesozooplankton biolovume measures was considered in order to identify controlling factors and determine whether the communities were sensitive to Marine Heat Waves. We created a training set of 22 classes (17 of plankton) and the classifier had an estimated accuracy of 88.0% with 10 fold validation evaluation and selected Random Forest. Also comparison of counting estimates derived from automatic classification and traditional methodology revealed that the two counting methods were statistically not different. It was found that main composition of the mesozooplankton was coherent with other studies and that the community was characterized by both seasonal and inter-annual variability. Some predations on copepods patterns where suggested within the community. Further descriptive analysis confirmed some previously determined dynamics such as nutrient increase through convection of deep sea water and give an insight about the environmental dynamics of the area at that period. Marine Heat Waves did not seem to affect zooplankton community. Most importantly suggested here, is the reliability of the automatic classification method as a plankton treatment system for this area. Also, a second training set was created, which can be used as a template for other studies, since it represents the overall specific diversity of the area.
Location
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.