Separating Natural Climate Variability and Anthropogenic Contributions in the Observed Global Temperature: A Study from 1950 to 2019.
Supervisors: Carlos Garcia-Soto, Jon Saenz (BEGIK Joint Research Unit IEO-UPV/EHU)
While there is no agreement on the degree to which natural factors influence the presentclimate, it is generally accepted that they can influence global-mean temperature by amplifyingor reducing the temperature increase at di↵erent temporal and spatial scales. Here, we seekto identify natural factors which significantly contribute to global-mean surface temperaturefor the period from 1950 to 2019. A multiple linear regression analysis of global-mean surfacetemperature using 14 natural factors and total anthropogenic forcing as possible explanatoryvariables is used. A procedure which outlines a multistep model selection method is proposed,resulting a model containing the anthropogenic factor, the Atlantic Multi-decadal Oscillation(AMO), El Ni˜no-Southern Oscillation (ENSO), volcanic forcing, the Pacific-North AmericanTeleconnection Pattern (PNA) and the Indian Ocean Basin Mode (IOBM) as explanatory variables.The anthropogenic factor accounts for 91%(±3.5) of the total temperature variability andthe collection of natural factors account for 51% (±19) of the residual temperature variabilitynot explained by the anthropogenic factor. The contributions to global-mean temperature fromeach of these natural factors are quantified and the global-mean temperature data is adjustedby removing estimated contributions from these natural factors. This allows for the calculationof the net anthropogenic global warming trend with reduced noise.Furthermore, we use principal component regression analysis in order to verify the resultsobtained from MLR and to quantify the contributions to global-mean temperature from all 14natural factors. Results from MLR and PCR agree for the most part; the PCR analysis suggeststhat MLR overestimates contributions from ENSO and the anthropogenic factor (suggesting thenet anthropogenic global warming trend needs to be adjusted). The results suggest that themodel from MLR does a better job at explaining the temperature variability. The globalmeantemperature data adjusted using models from PCR was found to have a trend whichis significantly di↵erent from the unadjusted data at a 97.5% confidence level. However, thissignificance should be taken lightly and future work is needed to verify the results in this study.
Location
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.