Potential Alterations of the Bile Acid Synthesis and Hepatic Detoxifying Mechanisms in European sea bass (Dicentrachus labrax) after in vivo Exposure to a Xenoestrogen Mixture
Supervisors: Maren Ortiz-Zarragoitia, Eider Bilbao (UPV/EHU)
This project was aimed to shed light on an unexpected outcome of an in vivo experiment. Juveniles of European sea bass (Dicentrarchus labrax) exposed to a mixture of xenoestrogens (bisphenol A, 4-tert-octylphenol, diethylstilbestrol and 17beta-estradiol), showed a gradual change of bile colour (from green to white) over the exposure time. After the recovery period, the bile colour reversed to its normal, physiological, green colour. In addition, plasma clotting was common in exposed fish and chemical tissue distribution changed from high levels in the bile at the first days to high concentrations of BPA in liver and blood during the last days of exposure period and recovery time. Thus, it was hypothesised, that the mixture of xenoestrogens altered bile acid synthesis and liver detoxification pathways. To provide a deeper insight into these processes, genes involved in bile acid synthesis, such as cyp7a1, fxr, lxr and hmg-CoA reductase were amplified and sequenced for qPCRs analysis. Likewise, genes involved in detoxification such as cyp1a, cyp3a, udp and abcb11 were investigated as well as vtg, a marker of xenoestrogenicity. Liver samples were processed at day 3 and 7 of exposure and at day 7 of recovering (day 17 of the experiment). Liver somatic index significantly decreased after 10 days of exposure. After 3 days of exposure cyp7a1, fxr, lxr, cyp1a and udp were down-regulated, whereas hmg-Coar, cyp3a and abcb11 were not altered. Then all these gene as well as cyp3a and udp were upregulated after 7 days of exposure. No changes were registered in vtg levels. At the end of the recovery period all assessed genes were significantly down-regulated compared to the transcription levels at day 7. Overall, it was considered that the exposure to xenoestrogens may have induced a severe impact in normal liver metabolism impairing bile acid synthesis, detoxification mechanisms and xenoestrogenic response.
Location
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.