Carbonate chemistry and acidification of the North East Atlantic
Supervisor: Eric Achterberg (National Oceanographic Centre, Southampton)
The increase in atmospheric CO2 concentrations, primarily driven by human resource consumption, is increasing the anthropogenic carbon (Cant) budget of the oceans, and affecting the carbonate system by decreasing the pH and the concentration of carbonate ions (CO32-) in seawater. The acidification process will affect speciation (e.g. metals and nutrients) and biogeochemical cycling, which will affect marine organisms and ecosystem functioning. The research cruise undertaken along the Extended Ellet Line (EEL) from Iceland to Scotland, has allowed us to continue a carbonate chemistry time series for this study region and involved the collection of high quality Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) water column samples with subsequent analysis with an overall analysis precision of 1.07 μmol/kg and 1.03 μmol/kg, respectively. In addition, high spatial resolution surface DIC measurements were undertaken. The analysis of complementary dissolved oxygen and nutrient data as well as ancillary data (potential temperature, salinity) has allowed the determination of the water mass structure across the section, allowing us to assess the DIC and TA signatures for the different water masses. Six different water masses were identified: Surface waters (SW), Sub-Polar Mode Water (SPMW), Intermediate Water (IW), Labrador Sea Water (LSW), Iceland-Scotland Overflow Water (ISOW) and Lower Deep Water (LWD). The analysis of DIC distributions highlighted the importance of biological control on surface and intermediate depth concentrations, as well as the accumulation of anthropogenic carbon in newly formed Labrador Sea mode waters. The highest DIC concentrations (up to 2178 μmol/kg) were found at IW and LSW due to a combination of biologically organic matter decomposition and Cant accumulation. The analysis of 4221 surface DIC samples along the cruise track has allowed the creation of an empirical algorithm to determine DIC surface concentrations in the North East Atlantic, using fluorescence, temperature and salinity underway measurements. The equation created (DICpre. = 433.15 + (-13.61 * Tº) + 51.75 * S + (-66.39 * Fluor.)) explains more than 79 % of the variability in DIC concentrations, therefore forms a robust and strong correlation which can be used to predict surface DIC in the area under investigation. The comparison of the obtained data with the previous year EEL cruises (2011 and 2012) as well as with the historical CARINA database (1993), has shown the trend in seawater acidification of the North East Atlantic. In the 20 year period surface waters pH decreased by 0.0614 units at -0.0031 units yr-1 while the pH across the whole water column has decreased by 0.024 units at a rate of -0.00121 units yr-1. Predictions for the year 2100, assuming constant acidification rates, decreased surface water pH by 0.33 units. The prediction probably underestimates pH decline since anthropogenic CO2 emission are increasing more rapidly. The continuity and extension of high spatial resolution sampling of carbonate chemistry parameters like the EEL is of key interest to help as input parameters in climate modelling and as baseline studies for assessing the actual state of the oceans and implement the corresponding regulations to reduce human impact on the oceans.
Location
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.